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DL based Factorisation based schemes

ELGAMAL ENCRYPTION SCHEME

alice bob

sk := x
pk := gx

m
⟨G, q, g, gx, x⟩ ← GEN(n)

y← Z/qZ
(c1, c2) := (gy,mgxy)

Dec: m = c2 (c1
x)−1
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DL based Factorisation based schemes

▶ Let G be a polynomial-time algorithm that takes as input n
and (except possibly with negligible probability) outputs a
description of a cyclic group G, its order q (with ∥q∥ ≈ n),
and a generator g.

▶ Now we formally describe ElGamal encryption scheme as
(GEN,ENC,DEC).
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DL based Factorisation based schemes

SYNTAX OF THE ELGAMAL ENCRYPTION SCHEME

– GEN: on input 1n, run G(1n) to obtain (G, q, g). Then
choose a uniform x ∈ Z/qZ and compute h := gx . The
public key is ⟨G, q, g, h⟩ and the private key is ⟨G, q, g, x⟩.
The message space is G.

– ENC: on input a public key pk = ⟨G, q, g, h⟩ and a message
m ∈ G, choose a uniform y ∈ Z/qZ and output the
ciphertext ⟨gy,m · hy⟩.

– DEC: on input a private key pk = ⟨G, q, g, x⟩ and a
ciphertext (c1, c2), output m̂ = c2 · (c1

x)−1.

Theorem
If the DDH (Decisional Diffie Hellman) problem is hard relative to G,
then the ElGamal encryption scheme is CPA-secure.
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DL based Factorisation based schemes

DDH-BASED KEY ENCAPSULATION
Let G be as defined. Define a KEM as follows:

– GEN: on input n run G(n) to obtain (G, q, g). Choose a uni-
form x ∈ Z/qZ and set h := gx. Also specify a function H :
G 7→ {0, 1}ℓn for some function ℓ. Set pk := ⟨G, q, g, h,H⟩
and sk := ⟨G, q, g, x⟩ .

– ENCAPS: on input a public key pk := ⟨G, q, g, h,H⟩, choose
a uniform y ∈ Z/qZ and output the ciphertext gy and the
key H(hy) .

– DECAPS: on input a private key sk := ⟨G, q, g, x⟩ and a ci-
phertext c ∈ G, output the key H(cx) .

Theorem
If the DDH problem is hard relative to G, and H is modeled as a
random oracle, then the above Construction is a CPA-secure KEM.
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DL based Factorisation based schemes

PLAIN RSA ENCRYPTION SCHEME

alice bob

– choose primes p and q s.t., p ≈ q ≈ 22048.
– Let N := p · q; ϕ(N) = (p− 1) · (q− 1).
– Choose e > 1 s.t gcd(e, ϕ(N)) = 1.
– Compute d :=

[
e−1 mod ϕ(N)

]
.

sk := ⟨N, d⟩
pk := ⟨N, e⟩

m

ENC c := me (mod N)

DEC m = cd (mod N)
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Formal description of plain RSA algorithm is given below

Algorithm 1: RSA key generation genRSA(n)
Input: Security Parameter n
Output: N, e, d
N, p, q← genModulus(n)

/* It is a PPT algorithm which outputs (N, p, q)
where N = pq, and p and q are n-bit primes except

with probability negligible in n. */

ϕ(N) := (p− 1) · (q− 1)
Choose e > 1 such that gcd(e, ϕ(N)) = 1.
Compute d :=

[
e−1 mod ϕ(N)

]
.

return N, e, d



DL based Factorisation based schemes

Plain RSA public-key encryption scheme

– GEN: on input n run genRSA(n) to obtain N, e, and d. The
public key is ⟨N, e⟩ and the private key is ⟨N, d⟩

– ENC: on input a public key pk = ⟨N, e⟩ and a message m ∈
Z/NZ, compute the ciphertext

c := [me mod N]

– DEC: on input a private key sk = ⟨N, d⟩ and a ciphertext
c ∈ Z/NZ, compute the message

m :=
[
cd mod N

]

▶ Plain RSA is not even CPA-secure.
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DL based Factorisation based schemes

RSA-OAEP
OAEP- OPTIMAL ASYMMETRIC ENCRYPTION PADDING

m||0k1 r ∈ {0, 1}k0

G

H

s t

– The OAEP transformation is
a two-round Feistel network
with G and H as round func-
tions.

– First set m′ := m||0k1

and choose a uniform r ∈
{0, 1}k0 . Then compute

s := m′⊕G(r) and t := r⊕H(s)

and set m̂ = s||t.
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DL based Factorisation based schemes

– Let ℓ(n), k0(n), k1(n) be integer-valued functions with
k0(n), k1(n) = Θ(n) and such that ℓ(n) + k0(n) + k1(n) is less
than the minimum bit-length of moduli output by
genRSA(1n).

– Let G : {0, 1}k0 7→ {0, 1}ℓ+k1 and H : {0, 1}ℓ+k1 7→ {0, 1}k0 . be
functions.
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DL based Factorisation based schemes

THE RSA-OAEP ENCRYPTION SCHEME

– GEN: on input n run genRSA(n) to obtain N, e, and d. The
public key is ⟨N, e⟩ and the private key is ⟨N, d⟩

– ENC: on input a public key pk = ⟨N, e⟩ and a message
m ∈ Z/NZ, first set m′ := m||0k1 and choose a uniform
r ∈ {0, 1}k0 . Then compute s := m′⊕G(r) and t := r⊕H(s)
and set m̂ = s||t. Compute the ciphertext

c := [m̂e mod N]

– DEC: on input a private key sk = ⟨N, d⟩ and a ciphertext c ∈
Z/NZ, compute the message m̂ :=

[
cd mod N

]
. If ∥m̂∥ >

ℓ+k0+k1, output⊥. Otherwise, parse m̂ as ⟨s, t⟩. Compute
r := H(s)⊕ t and m′ := G(r)⊕ s. If the k1 lsbs of m′ are not
all 0, output ⊥. Otherwise, output the ℓ msb’s of m′.
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DL based Factorisation based schemes

RSA BASED CCA-SECURE KEM

Let genRSA be as usual, and construct a KEM as follows:
– GEN: (N, e, d) ← genRSA(1n). Set pk = ⟨N, e⟩ and sk =
⟨N, d⟩. A function H : Z/NZ∗ 7→ {0, 1}n is also specified,
but we leave this implicit.

– ENCAPS: on input pk = ⟨N, e⟩ and 1n, choose a uniform
r ∈ Z/NZ∗ and output c := re mod N and k := H(r).

– DECAPS: on input sk = ⟨N, d⟩ and a ciphertext c ∈ Z/NZ∗,
compute r := cd mod N and output the key k := H(r).

Theorem
If the RSA problem is hard relative to genRSA and H is modeled as a
random oracle, then above Construction is CCA-secure.
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